

Ingenieurbüro für Musterbauten□ Dipl.-Ing. Moritz Mustermann; Musterstraße 13; 35716 Musterstadt

Position:

Querschnittswerte/Spannungen für Aussteifungskerne

Geometriedaten / Material:

Material = C25/30

Anzahl Knotenpunkte = 6

Anzahl Wände = 5

Knoten Nummer	y-Koordinate [m]	z-Koordinate [m]		
1	0,000	0,000		
2	2,000	0,000		
3	2,000	-4,000		
4	0,000	-4,000		
5	0,500	0,000		
6	1,500	0,000		

Dipl.-Ing. Moritz Mustermann; Musterstraße 13; 35716 Musterstadt

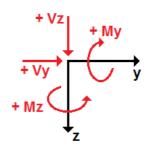
Wand Nummer Knoten a Knoten e Dicke t [cm] Länge L [m] 2 3 25,0 4,000 2 3 4 30.0 2,000 3 4 1 25,0 4,000 4 5 0,500 1 25,0 5 6 2 25,0 0,500

Belastung:

Nd = Längsdruckkraft in x-Richtung (Zug positiv)

Myd = Biegemoment um y-Achse

Mzd = Biegemoment um z-Achse


Vzd = Querkraft in z-Richtung

Vyd = Querkraft in y-Richtung

Mx,pd = primäres Torsionsmoment um x-Achse

Mx,sd = sekundäres Torsionsmoment um x-Achse

Mwd = Wölbbimoment um x-Achse

LF Nr.	Nd [MN]	Myd [MNm]	Mzd [MNm]	Vzd [MN]	Vyd [MN]	Mx,pd [MNm]	Mx,sd [MNm]	Mwd [MNm]	Bemerkung
1	-55,000	2,300	3,800	11,000	12,000	4,500	3,000	2,400	
2	-55,000	-1,400	-2,700	-8,000	-15,000	-2,000	-4,000	-2,400	

Querschnittswerte:

A =

ys = 1,000 m (Schwerpunktskoordinate) zs = -2,246 m (Schwerpunktskoordinate) alpha = 0,0000 ° (Drehwinkel Hauptachsen) 5,895 m⁴ (Flächenmoment um y-Achse) ly = lz = 2,346 m⁴ (Flächenmoment um z-Achse)

lyz = 0,000 m⁴ (Flächenzentrifugalmoment 2.Grades y/z-System)

5,895 m^4 (Flächenmoment um y´-Achse bezogen auf Hauptachsen) ly´= 2,346 m⁴ (Flächenmoment um z´-Achse bezogen auf Hauptachsen) lz´ = 0,000 m⁴ (Flächenzentrifugalmoment 2.Grades Hauptsystem) lyz´ =

yM = 1,000 m (Koordinate Schubmittelpunkt) zM =-6,096 m (Koordinate Schubmittelpunkt) IT = 0,065 m⁴ (Torsionswiderstand St. Vernant)

6,695 m^6 (Wölbwiderstand) lw = 3,360 m³ (bezogen auf y-Achse) Wy,min = Wy,max = 2,625 m³ (bezogen auf y-Achse) Wz,min = 2,346 m³ (bezogen auf z-Achse) $Wz,max = 2,346 \text{ m}^3 \text{ (bezogen auf z-Achse)}$ Wy',min = 3,360 m³ (bezogen auf y'-Achse) $Wy',max = 2,625 \text{ m}^3 \text{ (bezogen auf y'-Achse)}$ Wz',min = 2,346 m³ (bezogen auf z'-Achse)

 $Wz',max = 2.346 \text{ m}^3 \text{ (bezogen auf z'-Achse)}$

Spannungen:

Aussteifungskerne 10.0

Seite 3

Ingenieurbüro für Musterbauten

Dipl.-Ing. Moritz Mustermann; Musterstraße 13; 35716 Musterstadt

Ergebnisse für min-Werte aus Lastfällen:

Schubspannungen Tau,z aus Vzd: |max.Wert| = 6,800 MN/m² Schubspannungen Tau,y aus Vyd: |max.Wert| = 22,380 MN/m²

Schubspannungen Tau aus Mx,pd: |max.Wert| = 9,249 MN/m² (primäre Torsion, linearer Verlauf)

Schubspannungen Tau aus Mx,pd: |max.Wert| = 0,000 MN/m² (primäre Torsion, konstanter Verlauf)

Schubspannungen Tau aus Mx,sd: |max.Wert| = 0,000 MN/m² (sekundäre Torsion)

Normalspannungen Sigma aus Nd: $|max.Wert| = 19,298 \text{ MN/m}^2$ Normalspannungen Sigma aus Myd: $|max.Wert| = 0,685 \text{ MN/m}^2$ Normalspannungen Sigma aus Mzd: $|max.Wert| = 1,620 \text{ MN/m}^2$

Normalspannungen Sigma aus Mwd: |max.Wert| = 0,018 MN/m² (Wölbbimoment)

Summe Schubspannungen Tau,d: |max.Wert| = 25,306 MN/m² (ohne linearen Anteil aus Mx,pd)

Summe Normalspannungen Sigma: |max.Wert| = 21,610 MN/m²

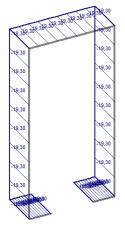
Ergebnisse für max-Werte aus Lastfällen:

Schubspannungen Tau,z aus Vzd: |max.Wert| = 6,800 MN/m² Schubspannungen Tau,y aus Vyd: |max.Wert| = 27,975 MN/m²

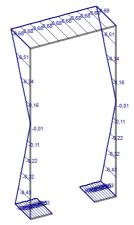
Schubspannungen Tau aus Mx,pd: |max.Wert| = 20,809 MN/m² (primäre Torsion, linearer Verlauf) Schubspannungen Tau aus Mx,pd: |max.Wert| = 0,000 MN/m² (primäre Torsion, konstanter Verlauf)

Schubspannungen Tau aus Mx,sd: |max.Wert| = 0,000 MN/m² (sekundäre Torsion)

Normalspannungen Sigma aus Nd: $|max.Wert| = 0,000 \text{ MN/m}^2$ Normalspannungen Sigma aus Myd: $|max.Wert| = 0,876 \text{ MN/m}^2$ Normalspannungen Sigma aus Mzd: $|max.Wert| = 1,620 \text{ MN/m}^2$

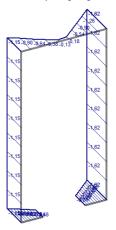

Normalspannungen Sigma aus Mwd: |max.Wert| = 0,018 MN/m² (Wölbbimoment)

Summe Schubspannungen Tau,d: |max.Wert| = 28,915 MN/m² (ohne linearen Anteil aus Mx,pd)

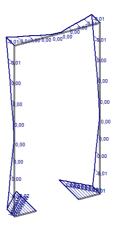

Summe Normalspannungen Sigma: |max.Wert| = 0,000 MN/m²

Grafiken für min-Werte aus Lastfällen:

Normalspannungen Sigma,d aus N,d [MN/m²] min-Werte aus Lastfällen

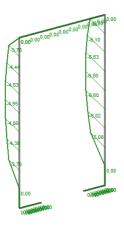


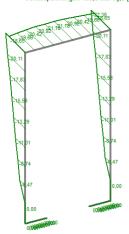
lormalspannungen Sigma,d aus My,d [MN/m²] min-Werte aus Lastfällen

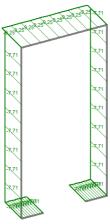


Dipl.-Ing. Moritz Mustermann; Musterstraße 13; 35716 Musterstadt

Normalspannungen Sigma,d aus Mz,d [MN/m²] min-Werte aus Lastfäller

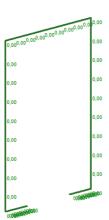

Normalenannungen Sigma d aus Mur d [MN/m²] min Worte aus Lastfäller


Summe Normalspannungen Sigma,d [MN/m²] min-Werte aus Lastfäller

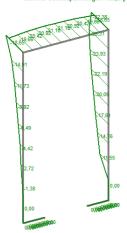

Schubspannungen Tau,d aus Vz,d [MN/m²] min-Werte aus Lastfällen

Schubspannungen Tau,d aus Vy,d [MN/m²] min-Werte aus Lastfällen

Schubspannungen Tau,d aus Mx,pd (lin. Verlauf) [MN/m²] min-Werte aus Lastfälle

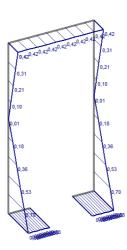


Dipl.-Ing. Moritz Mustermann; Musterstraße 13; 35716 Musterstadt


Schubspannungen Tau,d aus Mx,pd (konst. Verlauf) [MN/m²] min-Werte aus Lastf

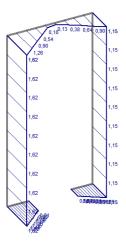
Schubspannungen Tau,d aus Mx,sd [MN/m²] min-Werte aus Lastfälle

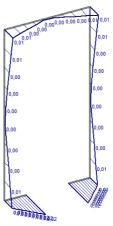
Summe Schubspannungen Tau,d [MN/m²] min-Werte aus Lastfällen



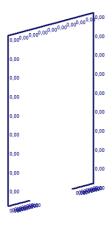
Grafiken für max-Werte aus Lastfällen:

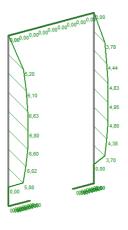
Normalspannungen Sigma,d aus N,d [MN/m²] max-Werte aus Lastfällen

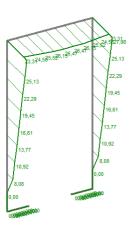

Normalspannungen Sigma,d aus My,d [MN/ m^2] max-Werte aus Lastfällen

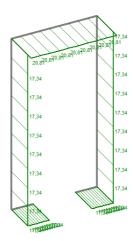

Dipl.-Ing. Moritz Mustermann; Musterstraße 13; 35716 Musterstadt

Normalspannungen Sigma,d aus Mz,d [MN/m²] max-Werte aus Lastfäller



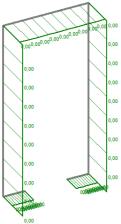

Summe Normalspannungen Sigma,d [MN/m²] max-Werte aus Lastfälle

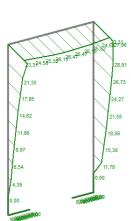

Schubspannungen Tau,d aus Vz,d [MN/m²] max-Werte aus Lastfällen

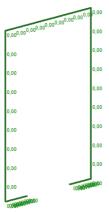


Schubspannungen Tau,d aus Vy,d [MN/m²] max-Werte aus Lastfällen

Schubspannungen Tau,d aus Mx,pd (lin. Verlauf) [MN/m²] max-Werte aus Lastfälle




Dipl.-Ing. Moritz Mustermann; Musterstraße 13; 35716 Musterstadt


Schubspannungen Tau,d aus Mx,pd (konst. Verlauf) [MN/m²] max-Werte aus Lastfà

Schubspannungen Tau,d aus Mx,sd [MN/m²] max-Werte aus Lastfällen

